Riesz basis property of the generalized eigenvector system of a Timoshenko beam

نویسندگان

  • Genqi Xu
  • De-Xing Feng
  • Siu-Pang Yung
چکیده

The Riesz basis property of the generalized eigenvector system of a Timoshenko beam with boundary feedback controls applied to two ends is studied in the present paper. The spectral property of the operator A determined by the closed loop system is investigated. It is shown that operator A has compact resolvent and generates a C0 semigroup, and its spectrum consists of two branches and has two asymptotes under some conditions. Furthermore it is proved that the sequence of all generalized eigenvectors of the system principal operator forms a Riesz basis for the state Hilbert space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Riesz basis property of a Timoshenko beam with boundary feedback and application

The Riesz basis property of the generalized eigenvector system of a Timoshenko beam with boundary feedback is studied. Firstly, two auxiliary operators are introduced, and the Riesz basis property of their eigenvector systems is proved. This property is used to show that the generalized eigenvector system of a Timoshenko beam with some linear boundary feedback forms a Riesz basis in the corresp...

متن کامل

Riesz Basis Property of Timoshenko Beams with Boundary Feedback Control

A Timoshenko beam equation with boundary feedback control is considered. By an abstract result on the Riesz basis generation for the discrete operators in the Hilbert spaces, we show that the closed-loop system is a Riesz system, that is, the sequence of generalized eigenvectors of the closed-loop system forms a Riesz basis in the state Hilbert space. 1. Introduction. The boundary feedback stab...

متن کامل

Exponential Stability of Timoshenko Beam System with Delay Terms in Boundary Feedbacks

In this paper, the stability of a Timoshenko beam with time delays in the boundary input is studied. The system is fixed at the left end, and at the other end there are feedback controllers, in which time delays exist. We prove that this closed loop system is well-posed. By the complete spectral analysis, we show that there is a sequence of eigenvectors and generalized eigenvectors of the syste...

متن کامل

Riesz Basis Property and Exponential Stability of Controlled Euler--Bernoulli Beam Equations with Variable Coefficients

This paper studies the basis property and the stability of a distributed system described by a nonuniform Euler–Bernoulli beam equation under linear boundary feedback control. It is shown that there is a sequence of generalized eigenfunctions of the system, which forms a Riesz basis for the state Hilbert space. The asymptotic distribution of eigenvalues, the spectrumdetermined growth condition,...

متن کامل

Transverse Vibration for Non-uniform Timoshenko Nano-beams

In this paper, Eringen’s nonlocal elasticity and Timoshenko beam theories are implemented to analyze the bending vibration for non-uniform nano-beams.  The governing equations and the boundary conditions are derived using Hamilton’s principle. A Generalized Differential Quadrature Method (GDQM) is utilized for solving the governing equations of non-uniform Timoshenko nano-beam for pinned-pinned...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IMA J. Math. Control & Information

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2004